Detecting Novel Scans Through Pattern Anomaly Detection

نویسنده

  • Alfonso Valdes
چکیده

We introduce a technique for detecting anomalous patterns in a categorical feature (one that takes values from a finite alphabet). It differs from most anomaly detection methods used to date in that it does not require attackfree training data, and it improves upon previous methods known to us in that it is aware when it is adequately trained to generate meaningful alerts, and it models data not as normal and anomalous but as falling into one of a number of modes discovered by competitive learning. We apply the technique to port patterns in TCP sessions (the alphabet being the port numbers) and highlight interesting patterns detected in simulated and real traffic. We propose extensions where the learned pattern library can be seeded and some patterns of interest can be labeled, so that certain patterns generate an alert no matter how frequently they are observed, while others labeled benign do not generate alerts even if rarely seen. Finally, we outline a hybrid system approach to closely integrate anomaly and misuse detection, arguing that the historical dichotomy with which many researchers approach these techniques is now

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Summarization of Novel Network Attacks Using Data Mining

This paper introduces the Minnesota Intrusion Detection System (MINDS), which uses a suite of data mining techniques to automatically detect attacks against computer networks and systems. While the long-term objective of MINDS is to address all aspects of intrusion detection, in this paper we present two specific contributions. First, we present MINDS anomaly detection module that assigns a sco...

متن کامل

Detection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis

Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

Analyzing TCP Traffic Patterns Using Self Organizing Maps

The continuous evolution of the attacks against computer networks has given renewed strength to research on anomaly based Intrusion Detection Systems, capable of automatically detecting anomalous deviations in the behavior of a computer system. While data mining and learning techniques have been successfully applied in host-based intrusion detection, network-based applications are more difficul...

متن کامل

Information Fusion for Anomaly Detection with the Dendritic Cell Algoritm

Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the bio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003